GeometryUtils.js 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. import { Vector3 } from 'three';
  2. /**
  3. * Generates 2D-Coordinates in a very fast way.
  4. *
  5. * Based on work by:
  6. * @link http://www.openprocessing.org/sketch/15493
  7. *
  8. * @param center Center of Hilbert curve.
  9. * @param size Total width of Hilbert curve.
  10. * @param iterations Number of subdivisions.
  11. * @param v0 Corner index -X, -Z.
  12. * @param v1 Corner index -X, +Z.
  13. * @param v2 Corner index +X, +Z.
  14. * @param v3 Corner index +X, -Z.
  15. */
  16. function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {
  17. const half = size / 2;
  18. const vec_s = [
  19. new Vector3( center.x - half, center.y, center.z - half ),
  20. new Vector3( center.x - half, center.y, center.z + half ),
  21. new Vector3( center.x + half, center.y, center.z + half ),
  22. new Vector3( center.x + half, center.y, center.z - half )
  23. ];
  24. const vec = [
  25. vec_s[ v0 ],
  26. vec_s[ v1 ],
  27. vec_s[ v2 ],
  28. vec_s[ v3 ]
  29. ];
  30. // Recurse iterations
  31. if ( 0 <= -- iterations ) {
  32. return [
  33. ...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ),
  34. ...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ),
  35. ...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ),
  36. ...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 )
  37. ];
  38. }
  39. // Return complete Hilbert Curve.
  40. return vec;
  41. }
  42. /**
  43. * Generates 3D-Coordinates in a very fast way.
  44. *
  45. * Based on work by:
  46. * @link https://openprocessing.org/user/5654
  47. *
  48. * @param center Center of Hilbert curve.
  49. * @param size Total width of Hilbert curve.
  50. * @param iterations Number of subdivisions.
  51. * @param v0 Corner index -X, +Y, -Z.
  52. * @param v1 Corner index -X, +Y, +Z.
  53. * @param v2 Corner index -X, -Y, +Z.
  54. * @param v3 Corner index -X, -Y, -Z.
  55. * @param v4 Corner index +X, -Y, -Z.
  56. * @param v5 Corner index +X, -Y, +Z.
  57. * @param v6 Corner index +X, +Y, +Z.
  58. * @param v7 Corner index +X, +Y, -Z.
  59. */
  60. function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {
  61. // Default Vars
  62. const half = size / 2;
  63. const vec_s = [
  64. new Vector3( center.x - half, center.y + half, center.z - half ),
  65. new Vector3( center.x - half, center.y + half, center.z + half ),
  66. new Vector3( center.x - half, center.y - half, center.z + half ),
  67. new Vector3( center.x - half, center.y - half, center.z - half ),
  68. new Vector3( center.x + half, center.y - half, center.z - half ),
  69. new Vector3( center.x + half, center.y - half, center.z + half ),
  70. new Vector3( center.x + half, center.y + half, center.z + half ),
  71. new Vector3( center.x + half, center.y + half, center.z - half )
  72. ];
  73. const vec = [
  74. vec_s[ v0 ],
  75. vec_s[ v1 ],
  76. vec_s[ v2 ],
  77. vec_s[ v3 ],
  78. vec_s[ v4 ],
  79. vec_s[ v5 ],
  80. vec_s[ v6 ],
  81. vec_s[ v7 ]
  82. ];
  83. // Recurse iterations
  84. if ( -- iterations >= 0 ) {
  85. return [
  86. ...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ),
  87. ...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
  88. ...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
  89. ...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
  90. ...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
  91. ...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
  92. ...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
  93. ...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 )
  94. ];
  95. }
  96. // Return complete Hilbert Curve.
  97. return vec;
  98. }
  99. /**
  100. * Generates a Gosper curve (lying in the XY plane)
  101. *
  102. * https://gist.github.com/nitaku/6521802
  103. *
  104. * @param size The size of a single gosper island.
  105. */
  106. function gosper( size = 1 ) {
  107. function fractalize( config ) {
  108. let output;
  109. let input = config.axiom;
  110. for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
  111. output = '';
  112. for ( let j = 0, jl = input.length; j < jl; j ++ ) {
  113. const char = input[ j ];
  114. if ( char in config.rules ) {
  115. output += config.rules[ char ];
  116. } else {
  117. output += char;
  118. }
  119. }
  120. input = output;
  121. }
  122. return output;
  123. }
  124. function toPoints( config ) {
  125. let currX = 0, currY = 0;
  126. let angle = 0;
  127. const path = [ 0, 0, 0 ];
  128. const fractal = config.fractal;
  129. for ( let i = 0, l = fractal.length; i < l; i ++ ) {
  130. const char = fractal[ i ];
  131. if ( char === '+' ) {
  132. angle += config.angle;
  133. } else if ( char === '-' ) {
  134. angle -= config.angle;
  135. } else if ( char === 'F' ) {
  136. currX += config.size * Math.cos( angle );
  137. currY += - config.size * Math.sin( angle );
  138. path.push( currX, currY, 0 );
  139. }
  140. }
  141. return path;
  142. }
  143. //
  144. const gosper = fractalize( {
  145. axiom: 'A',
  146. steps: 4,
  147. rules: {
  148. A: 'A+BF++BF-FA--FAFA-BF+',
  149. B: '-FA+BFBF++BF+FA--FA-B'
  150. }
  151. } );
  152. const points = toPoints( {
  153. fractal: gosper,
  154. size: size,
  155. angle: Math.PI / 3 // 60 degrees
  156. } );
  157. return points;
  158. }
  159. export {
  160. hilbert2D,
  161. hilbert3D,
  162. gosper,
  163. };