VolumeShader.js 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. import {
  2. Vector2,
  3. Vector3
  4. } from 'three';
  5. /**
  6. * Shaders to render 3D volumes using raycasting.
  7. * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
  8. * This is not the only approach, therefore it's marked 1.
  9. */
  10. const VolumeRenderShader1 = {
  11. uniforms: {
  12. 'u_size': { value: new Vector3( 1, 1, 1 ) },
  13. 'u_renderstyle': { value: 0 },
  14. 'u_renderthreshold': { value: 0.5 },
  15. 'u_clim': { value: new Vector2( 1, 1 ) },
  16. 'u_data': { value: null },
  17. 'u_cmdata': { value: null }
  18. },
  19. vertexShader: /* glsl */`
  20. varying vec4 v_nearpos;
  21. varying vec4 v_farpos;
  22. varying vec3 v_position;
  23. void main() {
  24. // Prepare transforms to map to "camera view". See also:
  25. // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
  26. mat4 viewtransformf = modelViewMatrix;
  27. mat4 viewtransformi = inverse(modelViewMatrix);
  28. // Project local vertex coordinate to camera position. Then do a step
  29. // backward (in cam coords) to the near clipping plane, and project back. Do
  30. // the same for the far clipping plane. This gives us all the information we
  31. // need to calculate the ray and truncate it to the viewing cone.
  32. vec4 position4 = vec4(position, 1.0);
  33. vec4 pos_in_cam = viewtransformf * position4;
  34. // Intersection of ray and near clipping plane (z = -1 in clip coords)
  35. pos_in_cam.z = -pos_in_cam.w;
  36. v_nearpos = viewtransformi * pos_in_cam;
  37. // Intersection of ray and far clipping plane (z = +1 in clip coords)
  38. pos_in_cam.z = pos_in_cam.w;
  39. v_farpos = viewtransformi * pos_in_cam;
  40. // Set varyings and output pos
  41. v_position = position;
  42. gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;
  43. }`,
  44. fragmentShader: /* glsl */`
  45. precision highp float;
  46. precision mediump sampler3D;
  47. uniform vec3 u_size;
  48. uniform int u_renderstyle;
  49. uniform float u_renderthreshold;
  50. uniform vec2 u_clim;
  51. uniform sampler3D u_data;
  52. uniform sampler2D u_cmdata;
  53. varying vec3 v_position;
  54. varying vec4 v_nearpos;
  55. varying vec4 v_farpos;
  56. // The maximum distance through our rendering volume is sqrt(3).
  57. const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3
  58. const int REFINEMENT_STEPS = 4;
  59. const float relative_step_size = 1.0;
  60. const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);
  61. const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);
  62. const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);
  63. const float shininess = 40.0;
  64. void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
  65. void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
  66. float sample1(vec3 texcoords);
  67. vec4 apply_colormap(float val);
  68. vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);
  69. void main() {
  70. // Normalize clipping plane info
  71. vec3 farpos = v_farpos.xyz / v_farpos.w;
  72. vec3 nearpos = v_nearpos.xyz / v_nearpos.w;
  73. // Calculate unit vector pointing in the view direction through this fragment.
  74. vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);
  75. // Compute the (negative) distance to the front surface or near clipping plane.
  76. // v_position is the back face of the cuboid, so the initial distance calculated in the dot
  77. // product below is the distance from near clip plane to the back of the cuboid
  78. float distance = dot(nearpos - v_position, view_ray);
  79. distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,
  80. (u_size.x - 0.5 - v_position.x) / view_ray.x));
  81. distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,
  82. (u_size.y - 0.5 - v_position.y) / view_ray.y));
  83. distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,
  84. (u_size.z - 0.5 - v_position.z) / view_ray.z));
  85. // Now we have the starting position on the front surface
  86. vec3 front = v_position + view_ray * distance;
  87. // Decide how many steps to take
  88. int nsteps = int(-distance / relative_step_size + 0.5);
  89. if ( nsteps < 1 )
  90. discard;
  91. // Get starting location and step vector in texture coordinates
  92. vec3 step = ((v_position - front) / u_size) / float(nsteps);
  93. vec3 start_loc = front / u_size;
  94. // For testing: show the number of steps. This helps to establish
  95. // whether the rays are correctly oriented
  96. //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);
  97. //'return;
  98. if (u_renderstyle == 0)
  99. cast_mip(start_loc, step, nsteps, view_ray);
  100. else if (u_renderstyle == 1)
  101. cast_iso(start_loc, step, nsteps, view_ray);
  102. if (gl_FragColor.a < 0.05)
  103. discard;
  104. }
  105. float sample1(vec3 texcoords) {
  106. /* Sample float value from a 3D texture. Assumes intensity data. */
  107. return texture(u_data, texcoords.xyz).r;
  108. }
  109. vec4 apply_colormap(float val) {
  110. val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);
  111. return texture2D(u_cmdata, vec2(val, 0.5));
  112. }
  113. void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
  114. float max_val = -1e6;
  115. int max_i = 100;
  116. vec3 loc = start_loc;
  117. // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
  118. // non-constant expression. So we use a hard-coded max, and an additional condition
  119. // inside the loop.
  120. for (int iter=0; iter<MAX_STEPS; iter++) {
  121. if (iter >= nsteps)
  122. break;
  123. // Sample from the 3D texture
  124. float val = sample1(loc);
  125. // Apply MIP operation
  126. if (val > max_val) {
  127. max_val = val;
  128. max_i = iter;
  129. }
  130. // Advance location deeper into the volume
  131. loc += step;
  132. }
  133. // Refine location, gives crispier images
  134. vec3 iloc = start_loc + step * (float(max_i) - 0.5);
  135. vec3 istep = step / float(REFINEMENT_STEPS);
  136. for (int i=0; i<REFINEMENT_STEPS; i++) {
  137. max_val = max(max_val, sample1(iloc));
  138. iloc += istep;
  139. }
  140. // Resolve final color
  141. gl_FragColor = apply_colormap(max_val);
  142. }
  143. void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
  144. gl_FragColor = vec4(0.0); // init transparent
  145. vec4 color3 = vec4(0.0); // final color
  146. vec3 dstep = 1.5 / u_size; // step to sample derivative
  147. vec3 loc = start_loc;
  148. float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);
  149. // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
  150. // non-constant expression. So we use a hard-coded max, and an additional condition
  151. // inside the loop.
  152. for (int iter=0; iter<MAX_STEPS; iter++) {
  153. if (iter >= nsteps)
  154. break;
  155. // Sample from the 3D texture
  156. float val = sample1(loc);
  157. if (val > low_threshold) {
  158. // Take the last interval in smaller steps
  159. vec3 iloc = loc - 0.5 * step;
  160. vec3 istep = step / float(REFINEMENT_STEPS);
  161. for (int i=0; i<REFINEMENT_STEPS; i++) {
  162. val = sample1(iloc);
  163. if (val > u_renderthreshold) {
  164. gl_FragColor = add_lighting(val, iloc, dstep, view_ray);
  165. return;
  166. }
  167. iloc += istep;
  168. }
  169. }
  170. // Advance location deeper into the volume
  171. loc += step;
  172. }
  173. }
  174. vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)
  175. {
  176. // Calculate color by incorporating lighting
  177. // View direction
  178. vec3 V = normalize(view_ray);
  179. // calculate normal vector from gradient
  180. vec3 N;
  181. float val1, val2;
  182. val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));
  183. val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));
  184. N[0] = val1 - val2;
  185. val = max(max(val1, val2), val);
  186. val1 = sample1(loc + vec3(0.0, -step[1], 0.0));
  187. val2 = sample1(loc + vec3(0.0, +step[1], 0.0));
  188. N[1] = val1 - val2;
  189. val = max(max(val1, val2), val);
  190. val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));
  191. val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));
  192. N[2] = val1 - val2;
  193. val = max(max(val1, val2), val);
  194. float gm = length(N); // gradient magnitude
  195. N = normalize(N);
  196. // Flip normal so it points towards viewer
  197. float Nselect = float(dot(N, V) > 0.0);
  198. N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;
  199. // Init colors
  200. vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);
  201. vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);
  202. vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);
  203. // note: could allow multiple lights
  204. for (int i=0; i<1; i++)
  205. {
  206. // Get light direction (make sure to prevent zero devision)
  207. vec3 L = normalize(view_ray); //lightDirs[i];
  208. float lightEnabled = float( length(L) > 0.0 );
  209. L = normalize(L + (1.0 - lightEnabled));
  210. // Calculate lighting properties
  211. float lambertTerm = clamp(dot(N, L), 0.0, 1.0);
  212. vec3 H = normalize(L+V); // Halfway vector
  213. float specularTerm = pow(max(dot(H, N), 0.0), shininess);
  214. // Calculate mask
  215. float mask1 = lightEnabled;
  216. // Calculate colors
  217. ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;
  218. diffuse_color += mask1 * lambertTerm;
  219. specular_color += mask1 * specularTerm * specular_color;
  220. }
  221. // Calculate final color by componing different components
  222. vec4 final_color;
  223. vec4 color = apply_colormap(val);
  224. final_color = color * (ambient_color + diffuse_color) + specular_color;
  225. final_color.a = color.a;
  226. return final_color;
  227. }`
  228. };
  229. export { VolumeRenderShader1 };