123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- import {
- Vector2,
- Vector3
- } from 'three';
- /**
- * Shaders to render 3D volumes using raycasting.
- * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
- * This is not the only approach, therefore it's marked 1.
- */
- const VolumeRenderShader1 = {
- uniforms: {
- 'u_size': { value: new Vector3( 1, 1, 1 ) },
- 'u_renderstyle': { value: 0 },
- 'u_renderthreshold': { value: 0.5 },
- 'u_clim': { value: new Vector2( 1, 1 ) },
- 'u_data': { value: null },
- 'u_cmdata': { value: null }
- },
- vertexShader: /* glsl */`
- varying vec4 v_nearpos;
- varying vec4 v_farpos;
- varying vec3 v_position;
- void main() {
- // Prepare transforms to map to "camera view". See also:
- // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
- mat4 viewtransformf = modelViewMatrix;
- mat4 viewtransformi = inverse(modelViewMatrix);
- // Project local vertex coordinate to camera position. Then do a step
- // backward (in cam coords) to the near clipping plane, and project back. Do
- // the same for the far clipping plane. This gives us all the information we
- // need to calculate the ray and truncate it to the viewing cone.
- vec4 position4 = vec4(position, 1.0);
- vec4 pos_in_cam = viewtransformf * position4;
- // Intersection of ray and near clipping plane (z = -1 in clip coords)
- pos_in_cam.z = -pos_in_cam.w;
- v_nearpos = viewtransformi * pos_in_cam;
- // Intersection of ray and far clipping plane (z = +1 in clip coords)
- pos_in_cam.z = pos_in_cam.w;
- v_farpos = viewtransformi * pos_in_cam;
- // Set varyings and output pos
- v_position = position;
- gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;
- }`,
- fragmentShader: /* glsl */`
- precision highp float;
- precision mediump sampler3D;
- uniform vec3 u_size;
- uniform int u_renderstyle;
- uniform float u_renderthreshold;
- uniform vec2 u_clim;
- uniform sampler3D u_data;
- uniform sampler2D u_cmdata;
- varying vec3 v_position;
- varying vec4 v_nearpos;
- varying vec4 v_farpos;
- // The maximum distance through our rendering volume is sqrt(3).
- const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3
- const int REFINEMENT_STEPS = 4;
- const float relative_step_size = 1.0;
- const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);
- const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);
- const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);
- const float shininess = 40.0;
- void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
- void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
- float sample1(vec3 texcoords);
- vec4 apply_colormap(float val);
- vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);
- void main() {
- // Normalize clipping plane info
- vec3 farpos = v_farpos.xyz / v_farpos.w;
- vec3 nearpos = v_nearpos.xyz / v_nearpos.w;
- // Calculate unit vector pointing in the view direction through this fragment.
- vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);
- // Compute the (negative) distance to the front surface or near clipping plane.
- // v_position is the back face of the cuboid, so the initial distance calculated in the dot
- // product below is the distance from near clip plane to the back of the cuboid
- float distance = dot(nearpos - v_position, view_ray);
- distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,
- (u_size.x - 0.5 - v_position.x) / view_ray.x));
- distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,
- (u_size.y - 0.5 - v_position.y) / view_ray.y));
- distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,
- (u_size.z - 0.5 - v_position.z) / view_ray.z));
- // Now we have the starting position on the front surface
- vec3 front = v_position + view_ray * distance;
- // Decide how many steps to take
- int nsteps = int(-distance / relative_step_size + 0.5);
- if ( nsteps < 1 )
- discard;
- // Get starting location and step vector in texture coordinates
- vec3 step = ((v_position - front) / u_size) / float(nsteps);
- vec3 start_loc = front / u_size;
- // For testing: show the number of steps. This helps to establish
- // whether the rays are correctly oriented
- //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);
- //'return;
- if (u_renderstyle == 0)
- cast_mip(start_loc, step, nsteps, view_ray);
- else if (u_renderstyle == 1)
- cast_iso(start_loc, step, nsteps, view_ray);
- if (gl_FragColor.a < 0.05)
- discard;
- }
- float sample1(vec3 texcoords) {
- /* Sample float value from a 3D texture. Assumes intensity data. */
- return texture(u_data, texcoords.xyz).r;
- }
- vec4 apply_colormap(float val) {
- val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);
- return texture2D(u_cmdata, vec2(val, 0.5));
- }
- void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
- float max_val = -1e6;
- int max_i = 100;
- vec3 loc = start_loc;
- // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
- // non-constant expression. So we use a hard-coded max, and an additional condition
- // inside the loop.
- for (int iter=0; iter<MAX_STEPS; iter++) {
- if (iter >= nsteps)
- break;
- // Sample from the 3D texture
- float val = sample1(loc);
- // Apply MIP operation
- if (val > max_val) {
- max_val = val;
- max_i = iter;
- }
- // Advance location deeper into the volume
- loc += step;
- }
- // Refine location, gives crispier images
- vec3 iloc = start_loc + step * (float(max_i) - 0.5);
- vec3 istep = step / float(REFINEMENT_STEPS);
- for (int i=0; i<REFINEMENT_STEPS; i++) {
- max_val = max(max_val, sample1(iloc));
- iloc += istep;
- }
- // Resolve final color
- gl_FragColor = apply_colormap(max_val);
- }
- void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
- gl_FragColor = vec4(0.0); // init transparent
- vec4 color3 = vec4(0.0); // final color
- vec3 dstep = 1.5 / u_size; // step to sample derivative
- vec3 loc = start_loc;
- float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);
- // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
- // non-constant expression. So we use a hard-coded max, and an additional condition
- // inside the loop.
- for (int iter=0; iter<MAX_STEPS; iter++) {
- if (iter >= nsteps)
- break;
- // Sample from the 3D texture
- float val = sample1(loc);
- if (val > low_threshold) {
- // Take the last interval in smaller steps
- vec3 iloc = loc - 0.5 * step;
- vec3 istep = step / float(REFINEMENT_STEPS);
- for (int i=0; i<REFINEMENT_STEPS; i++) {
- val = sample1(iloc);
- if (val > u_renderthreshold) {
- gl_FragColor = add_lighting(val, iloc, dstep, view_ray);
- return;
- }
- iloc += istep;
- }
- }
- // Advance location deeper into the volume
- loc += step;
- }
- }
- vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)
- {
- // Calculate color by incorporating lighting
- // View direction
- vec3 V = normalize(view_ray);
- // calculate normal vector from gradient
- vec3 N;
- float val1, val2;
- val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));
- val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));
- N[0] = val1 - val2;
- val = max(max(val1, val2), val);
- val1 = sample1(loc + vec3(0.0, -step[1], 0.0));
- val2 = sample1(loc + vec3(0.0, +step[1], 0.0));
- N[1] = val1 - val2;
- val = max(max(val1, val2), val);
- val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));
- val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));
- N[2] = val1 - val2;
- val = max(max(val1, val2), val);
- float gm = length(N); // gradient magnitude
- N = normalize(N);
- // Flip normal so it points towards viewer
- float Nselect = float(dot(N, V) > 0.0);
- N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;
- // Init colors
- vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);
- vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);
- vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);
- // note: could allow multiple lights
- for (int i=0; i<1; i++)
- {
- // Get light direction (make sure to prevent zero devision)
- vec3 L = normalize(view_ray); //lightDirs[i];
- float lightEnabled = float( length(L) > 0.0 );
- L = normalize(L + (1.0 - lightEnabled));
- // Calculate lighting properties
- float lambertTerm = clamp(dot(N, L), 0.0, 1.0);
- vec3 H = normalize(L+V); // Halfway vector
- float specularTerm = pow(max(dot(H, N), 0.0), shininess);
- // Calculate mask
- float mask1 = lightEnabled;
- // Calculate colors
- ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;
- diffuse_color += mask1 * lambertTerm;
- specular_color += mask1 * specularTerm * specular_color;
- }
- // Calculate final color by componing different components
- vec4 final_color;
- vec4 color = apply_colormap(val);
- final_color = color * (ambient_color + diffuse_color) + specular_color;
- final_color.a = color.a;
- return final_color;
- }`
- };
- export { VolumeRenderShader1 };
|