Sky.js 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219
  1. import {
  2. BackSide,
  3. BoxGeometry,
  4. Mesh,
  5. ShaderMaterial,
  6. UniformsUtils,
  7. Vector3
  8. } from 'three';
  9. /**
  10. * Based on "A Practical Analytic Model for Daylight"
  11. * aka The Preetham Model, the de facto standard analytic skydome model
  12. * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
  13. *
  14. * First implemented by Simon Wallner
  15. * http://simonwallner.at/project/atmospheric-scattering/
  16. *
  17. * Improved by Martin Upitis
  18. * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
  19. *
  20. * Three.js integration by zz85 http://twitter.com/blurspline
  21. */
  22. class Sky extends Mesh {
  23. constructor() {
  24. const shader = Sky.SkyShader;
  25. const material = new ShaderMaterial( {
  26. name: 'SkyShader',
  27. fragmentShader: shader.fragmentShader,
  28. vertexShader: shader.vertexShader,
  29. uniforms: UniformsUtils.clone( shader.uniforms ),
  30. side: BackSide,
  31. depthWrite: false
  32. } );
  33. super( new BoxGeometry( 1, 1, 1 ), material );
  34. this.isSky = true;
  35. }
  36. }
  37. Sky.SkyShader = {
  38. uniforms: {
  39. 'turbidity': { value: 2 },
  40. 'rayleigh': { value: 1 },
  41. 'mieCoefficient': { value: 0.005 },
  42. 'mieDirectionalG': { value: 0.8 },
  43. 'sunPosition': { value: new Vector3() },
  44. 'up': { value: new Vector3( 0, 1, 0 ) }
  45. },
  46. vertexShader: /* glsl */`
  47. uniform vec3 sunPosition;
  48. uniform float rayleigh;
  49. uniform float turbidity;
  50. uniform float mieCoefficient;
  51. uniform vec3 up;
  52. varying vec3 vWorldPosition;
  53. varying vec3 vSunDirection;
  54. varying float vSunfade;
  55. varying vec3 vBetaR;
  56. varying vec3 vBetaM;
  57. varying float vSunE;
  58. // constants for atmospheric scattering
  59. const float e = 2.71828182845904523536028747135266249775724709369995957;
  60. const float pi = 3.141592653589793238462643383279502884197169;
  61. // wavelength of used primaries, according to preetham
  62. const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
  63. // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
  64. // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
  65. const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
  66. // mie stuff
  67. // K coefficient for the primaries
  68. const float v = 4.0;
  69. const vec3 K = vec3( 0.686, 0.678, 0.666 );
  70. // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
  71. const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
  72. // earth shadow hack
  73. // cutoffAngle = pi / 1.95;
  74. const float cutoffAngle = 1.6110731556870734;
  75. const float steepness = 1.5;
  76. const float EE = 1000.0;
  77. float sunIntensity( float zenithAngleCos ) {
  78. zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
  79. return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
  80. }
  81. vec3 totalMie( float T ) {
  82. float c = ( 0.2 * T ) * 10E-18;
  83. return 0.434 * c * MieConst;
  84. }
  85. void main() {
  86. vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
  87. vWorldPosition = worldPosition.xyz;
  88. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  89. gl_Position.z = gl_Position.w; // set z to camera.far
  90. vSunDirection = normalize( sunPosition );
  91. vSunE = sunIntensity( dot( vSunDirection, up ) );
  92. vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );
  93. float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );
  94. // extinction (absorbtion + out scattering)
  95. // rayleigh coefficients
  96. vBetaR = totalRayleigh * rayleighCoefficient;
  97. // mie coefficients
  98. vBetaM = totalMie( turbidity ) * mieCoefficient;
  99. }`,
  100. fragmentShader: /* glsl */`
  101. varying vec3 vWorldPosition;
  102. varying vec3 vSunDirection;
  103. varying float vSunfade;
  104. varying vec3 vBetaR;
  105. varying vec3 vBetaM;
  106. varying float vSunE;
  107. uniform float mieDirectionalG;
  108. uniform vec3 up;
  109. const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );
  110. // constants for atmospheric scattering
  111. const float pi = 3.141592653589793238462643383279502884197169;
  112. const float n = 1.0003; // refractive index of air
  113. const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
  114. // optical length at zenith for molecules
  115. const float rayleighZenithLength = 8.4E3;
  116. const float mieZenithLength = 1.25E3;
  117. // 66 arc seconds -> degrees, and the cosine of that
  118. const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;
  119. // 3.0 / ( 16.0 * pi )
  120. const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
  121. // 1.0 / ( 4.0 * pi )
  122. const float ONE_OVER_FOURPI = 0.07957747154594767;
  123. float rayleighPhase( float cosTheta ) {
  124. return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
  125. }
  126. float hgPhase( float cosTheta, float g ) {
  127. float g2 = pow( g, 2.0 );
  128. float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
  129. return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
  130. }
  131. void main() {
  132. vec3 direction = normalize( vWorldPosition - cameraPos );
  133. // optical length
  134. // cutoff angle at 90 to avoid singularity in next formula.
  135. float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );
  136. float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
  137. float sR = rayleighZenithLength * inverse;
  138. float sM = mieZenithLength * inverse;
  139. // combined extinction factor
  140. vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );
  141. // in scattering
  142. float cosTheta = dot( direction, vSunDirection );
  143. float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
  144. vec3 betaRTheta = vBetaR * rPhase;
  145. float mPhase = hgPhase( cosTheta, mieDirectionalG );
  146. vec3 betaMTheta = vBetaM * mPhase;
  147. vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
  148. Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );
  149. // nightsky
  150. float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]
  151. float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]
  152. vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
  153. vec3 L0 = vec3( 0.1 ) * Fex;
  154. // composition + solar disc
  155. float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
  156. L0 += ( vSunE * 19000.0 * Fex ) * sundisk;
  157. vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );
  158. vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );
  159. gl_FragColor = vec4( retColor, 1.0 );
  160. #include <tonemapping_fragment>
  161. #include <encodings_fragment>
  162. }`
  163. };
  164. export { Sky };