123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- import {
- BackSide,
- BoxGeometry,
- Mesh,
- ShaderMaterial,
- UniformsUtils,
- Vector3
- } from 'three';
- /**
- * Based on "A Practical Analytic Model for Daylight"
- * aka The Preetham Model, the de facto standard analytic skydome model
- * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
- *
- * First implemented by Simon Wallner
- * http://simonwallner.at/project/atmospheric-scattering/
- *
- * Improved by Martin Upitis
- * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
- *
- * Three.js integration by zz85 http://twitter.com/blurspline
- */
- class Sky extends Mesh {
- constructor() {
- const shader = Sky.SkyShader;
- const material = new ShaderMaterial( {
- name: 'SkyShader',
- fragmentShader: shader.fragmentShader,
- vertexShader: shader.vertexShader,
- uniforms: UniformsUtils.clone( shader.uniforms ),
- side: BackSide,
- depthWrite: false
- } );
- super( new BoxGeometry( 1, 1, 1 ), material );
- this.isSky = true;
- }
- }
- Sky.SkyShader = {
- uniforms: {
- 'turbidity': { value: 2 },
- 'rayleigh': { value: 1 },
- 'mieCoefficient': { value: 0.005 },
- 'mieDirectionalG': { value: 0.8 },
- 'sunPosition': { value: new Vector3() },
- 'up': { value: new Vector3( 0, 1, 0 ) }
- },
- vertexShader: /* glsl */`
- uniform vec3 sunPosition;
- uniform float rayleigh;
- uniform float turbidity;
- uniform float mieCoefficient;
- uniform vec3 up;
- varying vec3 vWorldPosition;
- varying vec3 vSunDirection;
- varying float vSunfade;
- varying vec3 vBetaR;
- varying vec3 vBetaM;
- varying float vSunE;
- // constants for atmospheric scattering
- const float e = 2.71828182845904523536028747135266249775724709369995957;
- const float pi = 3.141592653589793238462643383279502884197169;
- // wavelength of used primaries, according to preetham
- const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
- // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
- // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
- const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
- // mie stuff
- // K coefficient for the primaries
- const float v = 4.0;
- const vec3 K = vec3( 0.686, 0.678, 0.666 );
- // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
- const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
- // earth shadow hack
- // cutoffAngle = pi / 1.95;
- const float cutoffAngle = 1.6110731556870734;
- const float steepness = 1.5;
- const float EE = 1000.0;
- float sunIntensity( float zenithAngleCos ) {
- zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
- return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
- }
- vec3 totalMie( float T ) {
- float c = ( 0.2 * T ) * 10E-18;
- return 0.434 * c * MieConst;
- }
- void main() {
- vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
- vWorldPosition = worldPosition.xyz;
- gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
- gl_Position.z = gl_Position.w; // set z to camera.far
- vSunDirection = normalize( sunPosition );
- vSunE = sunIntensity( dot( vSunDirection, up ) );
- vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );
- float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );
- // extinction (absorbtion + out scattering)
- // rayleigh coefficients
- vBetaR = totalRayleigh * rayleighCoefficient;
- // mie coefficients
- vBetaM = totalMie( turbidity ) * mieCoefficient;
- }`,
- fragmentShader: /* glsl */`
- varying vec3 vWorldPosition;
- varying vec3 vSunDirection;
- varying float vSunfade;
- varying vec3 vBetaR;
- varying vec3 vBetaM;
- varying float vSunE;
- uniform float mieDirectionalG;
- uniform vec3 up;
- const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );
- // constants for atmospheric scattering
- const float pi = 3.141592653589793238462643383279502884197169;
- const float n = 1.0003; // refractive index of air
- const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
- // optical length at zenith for molecules
- const float rayleighZenithLength = 8.4E3;
- const float mieZenithLength = 1.25E3;
- // 66 arc seconds -> degrees, and the cosine of that
- const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;
- // 3.0 / ( 16.0 * pi )
- const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
- // 1.0 / ( 4.0 * pi )
- const float ONE_OVER_FOURPI = 0.07957747154594767;
- float rayleighPhase( float cosTheta ) {
- return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
- }
- float hgPhase( float cosTheta, float g ) {
- float g2 = pow( g, 2.0 );
- float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
- return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
- }
- void main() {
- vec3 direction = normalize( vWorldPosition - cameraPos );
- // optical length
- // cutoff angle at 90 to avoid singularity in next formula.
- float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );
- float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
- float sR = rayleighZenithLength * inverse;
- float sM = mieZenithLength * inverse;
- // combined extinction factor
- vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );
- // in scattering
- float cosTheta = dot( direction, vSunDirection );
- float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
- vec3 betaRTheta = vBetaR * rPhase;
- float mPhase = hgPhase( cosTheta, mieDirectionalG );
- vec3 betaMTheta = vBetaM * mPhase;
- vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
- Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );
- // nightsky
- float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]
- float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]
- vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
- vec3 L0 = vec3( 0.1 ) * Fex;
- // composition + solar disc
- float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
- L0 += ( vSunE * 19000.0 * Fex ) * sundisk;
- vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );
- vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );
- gl_FragColor = vec4( retColor, 1.0 );
- #include <tonemapping_fragment>
- #include <encodings_fragment>
- }`
- };
- export { Sky };
|