12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271 |
- import {
- Line3,
- Plane,
- Triangle,
- Vector3
- } from 'three';
- /**
- * Ported from: https://github.com/maurizzzio/quickhull3d/ by Mauricio Poppe (https://github.com/maurizzzio)
- */
- const Visible = 0;
- const Deleted = 1;
- const _v1 = new Vector3();
- const _line3 = new Line3();
- const _plane = new Plane();
- const _closestPoint = new Vector3();
- const _triangle = new Triangle();
- class ConvexHull {
- constructor() {
- this.tolerance = - 1;
- this.faces = []; // the generated faces of the convex hull
- this.newFaces = []; // this array holds the faces that are generated within a single iteration
- // the vertex lists work as follows:
- //
- // let 'a' and 'b' be 'Face' instances
- // let 'v' be points wrapped as instance of 'Vertex'
- //
- // [v, v, ..., v, v, v, ...]
- // ^ ^
- // | |
- // a.outside b.outside
- //
- this.assigned = new VertexList();
- this.unassigned = new VertexList();
- this.vertices = []; // vertices of the hull (internal representation of given geometry data)
- }
- setFromPoints( points ) {
- // The algorithm needs at least four points.
- if ( points.length >= 4 ) {
- this.makeEmpty();
- for ( let i = 0, l = points.length; i < l; i ++ ) {
- this.vertices.push( new VertexNode( points[ i ] ) );
- }
- this.compute();
- }
- return this;
- }
- setFromObject( object ) {
- const points = [];
- object.updateMatrixWorld( true );
- object.traverse( function ( node ) {
- const geometry = node.geometry;
- if ( geometry !== undefined ) {
- const attribute = geometry.attributes.position;
- if ( attribute !== undefined ) {
- for ( let i = 0, l = attribute.count; i < l; i ++ ) {
- const point = new Vector3();
- point.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
- points.push( point );
- }
- }
- }
- } );
- return this.setFromPoints( points );
- }
- containsPoint( point ) {
- const faces = this.faces;
- for ( let i = 0, l = faces.length; i < l; i ++ ) {
- const face = faces[ i ];
- // compute signed distance and check on what half space the point lies
- if ( face.distanceToPoint( point ) > this.tolerance ) return false;
- }
- return true;
- }
- intersectRay( ray, target ) {
- // based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II
- const faces = this.faces;
- let tNear = - Infinity;
- let tFar = Infinity;
- for ( let i = 0, l = faces.length; i < l; i ++ ) {
- const face = faces[ i ];
- // interpret faces as planes for the further computation
- const vN = face.distanceToPoint( ray.origin );
- const vD = face.normal.dot( ray.direction );
- // if the origin is on the positive side of a plane (so the plane can "see" the origin) and
- // the ray is turned away or parallel to the plane, there is no intersection
- if ( vN > 0 && vD >= 0 ) return null;
- // compute the distance from the ray’s origin to the intersection with the plane
- const t = ( vD !== 0 ) ? ( - vN / vD ) : 0;
- // only proceed if the distance is positive. a negative distance means the intersection point
- // lies "behind" the origin
- if ( t <= 0 ) continue;
- // now categorized plane as front-facing or back-facing
- if ( vD > 0 ) {
- // plane faces away from the ray, so this plane is a back-face
- tFar = Math.min( t, tFar );
- } else {
- // front-face
- tNear = Math.max( t, tNear );
- }
- if ( tNear > tFar ) {
- // if tNear ever is greater than tFar, the ray must miss the convex hull
- return null;
- }
- }
- // evaluate intersection point
- // always try tNear first since its the closer intersection point
- if ( tNear !== - Infinity ) {
- ray.at( tNear, target );
- } else {
- ray.at( tFar, target );
- }
- return target;
- }
- intersectsRay( ray ) {
- return this.intersectRay( ray, _v1 ) !== null;
- }
- makeEmpty() {
- this.faces = [];
- this.vertices = [];
- return this;
- }
- // Adds a vertex to the 'assigned' list of vertices and assigns it to the given face
- addVertexToFace( vertex, face ) {
- vertex.face = face;
- if ( face.outside === null ) {
- this.assigned.append( vertex );
- } else {
- this.assigned.insertBefore( face.outside, vertex );
- }
- face.outside = vertex;
- return this;
- }
- // Removes a vertex from the 'assigned' list of vertices and from the given face
- removeVertexFromFace( vertex, face ) {
- if ( vertex === face.outside ) {
- // fix face.outside link
- if ( vertex.next !== null && vertex.next.face === face ) {
- // face has at least 2 outside vertices, move the 'outside' reference
- face.outside = vertex.next;
- } else {
- // vertex was the only outside vertex that face had
- face.outside = null;
- }
- }
- this.assigned.remove( vertex );
- return this;
- }
- // Removes all the visible vertices that a given face is able to see which are stored in the 'assigned' vertext list
- removeAllVerticesFromFace( face ) {
- if ( face.outside !== null ) {
- // reference to the first and last vertex of this face
- const start = face.outside;
- let end = face.outside;
- while ( end.next !== null && end.next.face === face ) {
- end = end.next;
- }
- this.assigned.removeSubList( start, end );
- // fix references
- start.prev = end.next = null;
- face.outside = null;
- return start;
- }
- }
- // Removes all the visible vertices that 'face' is able to see
- deleteFaceVertices( face, absorbingFace ) {
- const faceVertices = this.removeAllVerticesFromFace( face );
- if ( faceVertices !== undefined ) {
- if ( absorbingFace === undefined ) {
- // mark the vertices to be reassigned to some other face
- this.unassigned.appendChain( faceVertices );
- } else {
- // if there's an absorbing face try to assign as many vertices as possible to it
- let vertex = faceVertices;
- do {
- // we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
- // will be changed by upcoming method calls
- const nextVertex = vertex.next;
- const distance = absorbingFace.distanceToPoint( vertex.point );
- // check if 'vertex' is able to see 'absorbingFace'
- if ( distance > this.tolerance ) {
- this.addVertexToFace( vertex, absorbingFace );
- } else {
- this.unassigned.append( vertex );
- }
- // now assign next vertex
- vertex = nextVertex;
- } while ( vertex !== null );
- }
- }
- return this;
- }
- // Reassigns as many vertices as possible from the unassigned list to the new faces
- resolveUnassignedPoints( newFaces ) {
- if ( this.unassigned.isEmpty() === false ) {
- let vertex = this.unassigned.first();
- do {
- // buffer 'next' reference, see .deleteFaceVertices()
- const nextVertex = vertex.next;
- let maxDistance = this.tolerance;
- let maxFace = null;
- for ( let i = 0; i < newFaces.length; i ++ ) {
- const face = newFaces[ i ];
- if ( face.mark === Visible ) {
- const distance = face.distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- maxFace = face;
- }
- if ( maxDistance > 1000 * this.tolerance ) break;
- }
- }
- // 'maxFace' can be null e.g. if there are identical vertices
- if ( maxFace !== null ) {
- this.addVertexToFace( vertex, maxFace );
- }
- vertex = nextVertex;
- } while ( vertex !== null );
- }
- return this;
- }
- // Computes the extremes of a simplex which will be the initial hull
- computeExtremes() {
- const min = new Vector3();
- const max = new Vector3();
- const minVertices = [];
- const maxVertices = [];
- // initially assume that the first vertex is the min/max
- for ( let i = 0; i < 3; i ++ ) {
- minVertices[ i ] = maxVertices[ i ] = this.vertices[ 0 ];
- }
- min.copy( this.vertices[ 0 ].point );
- max.copy( this.vertices[ 0 ].point );
- // compute the min/max vertex on all six directions
- for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
- const vertex = this.vertices[ i ];
- const point = vertex.point;
- // update the min coordinates
- for ( let j = 0; j < 3; j ++ ) {
- if ( point.getComponent( j ) < min.getComponent( j ) ) {
- min.setComponent( j, point.getComponent( j ) );
- minVertices[ j ] = vertex;
- }
- }
- // update the max coordinates
- for ( let j = 0; j < 3; j ++ ) {
- if ( point.getComponent( j ) > max.getComponent( j ) ) {
- max.setComponent( j, point.getComponent( j ) );
- maxVertices[ j ] = vertex;
- }
- }
- }
- // use min/max vectors to compute an optimal epsilon
- this.tolerance = 3 * Number.EPSILON * (
- Math.max( Math.abs( min.x ), Math.abs( max.x ) ) +
- Math.max( Math.abs( min.y ), Math.abs( max.y ) ) +
- Math.max( Math.abs( min.z ), Math.abs( max.z ) )
- );
- return { min: minVertices, max: maxVertices };
- }
- // Computes the initial simplex assigning to its faces all the points
- // that are candidates to form part of the hull
- computeInitialHull() {
- const vertices = this.vertices;
- const extremes = this.computeExtremes();
- const min = extremes.min;
- const max = extremes.max;
- // 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
- // (max.x - min.x)
- // (max.y - min.y)
- // (max.z - min.z)
- let maxDistance = 0;
- let index = 0;
- for ( let i = 0; i < 3; i ++ ) {
- const distance = max[ i ].point.getComponent( i ) - min[ i ].point.getComponent( i );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- index = i;
- }
- }
- const v0 = min[ index ];
- const v1 = max[ index ];
- let v2;
- let v3;
- // 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'
- maxDistance = 0;
- _line3.set( v0.point, v1.point );
- for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
- const vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 ) {
- _line3.closestPointToPoint( vertex.point, true, _closestPoint );
- const distance = _closestPoint.distanceToSquared( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- v2 = vertex;
- }
- }
- }
- // 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'
- maxDistance = - 1;
- _plane.setFromCoplanarPoints( v0.point, v1.point, v2.point );
- for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
- const vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 && vertex !== v2 ) {
- const distance = Math.abs( _plane.distanceToPoint( vertex.point ) );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- v3 = vertex;
- }
- }
- }
- const faces = [];
- if ( _plane.distanceToPoint( v3.point ) < 0 ) {
- // the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron
- faces.push(
- Face.create( v0, v1, v2 ),
- Face.create( v3, v1, v0 ),
- Face.create( v3, v2, v1 ),
- Face.create( v3, v0, v2 )
- );
- // set the twin edge
- for ( let i = 0; i < 3; i ++ ) {
- const j = ( i + 1 ) % 3;
- // join face[ i ] i > 0, with the first face
- faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( j ) );
- // join face[ i ] with face[ i + 1 ], 1 <= i <= 3
- faces[ i + 1 ].getEdge( 1 ).setTwin( faces[ j + 1 ].getEdge( 0 ) );
- }
- } else {
- // the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron
- faces.push(
- Face.create( v0, v2, v1 ),
- Face.create( v3, v0, v1 ),
- Face.create( v3, v1, v2 ),
- Face.create( v3, v2, v0 )
- );
- // set the twin edge
- for ( let i = 0; i < 3; i ++ ) {
- const j = ( i + 1 ) % 3;
- // join face[ i ] i > 0, with the first face
- faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( ( 3 - i ) % 3 ) );
- // join face[ i ] with face[ i + 1 ]
- faces[ i + 1 ].getEdge( 0 ).setTwin( faces[ j + 1 ].getEdge( 1 ) );
- }
- }
- // the initial hull is the tetrahedron
- for ( let i = 0; i < 4; i ++ ) {
- this.faces.push( faces[ i ] );
- }
- // initial assignment of vertices to the faces of the tetrahedron
- for ( let i = 0, l = vertices.length; i < l; i ++ ) {
- const vertex = vertices[ i ];
- if ( vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3 ) {
- maxDistance = this.tolerance;
- let maxFace = null;
- for ( let j = 0; j < 4; j ++ ) {
- const distance = this.faces[ j ].distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- maxFace = this.faces[ j ];
- }
- }
- if ( maxFace !== null ) {
- this.addVertexToFace( vertex, maxFace );
- }
- }
- }
- return this;
- }
- // Removes inactive faces
- reindexFaces() {
- const activeFaces = [];
- for ( let i = 0; i < this.faces.length; i ++ ) {
- const face = this.faces[ i ];
- if ( face.mark === Visible ) {
- activeFaces.push( face );
- }
- }
- this.faces = activeFaces;
- return this;
- }
- // Finds the next vertex to create faces with the current hull
- nextVertexToAdd() {
- // if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'
- if ( this.assigned.isEmpty() === false ) {
- let eyeVertex, maxDistance = 0;
- // grap the first available face and start with the first visible vertex of that face
- const eyeFace = this.assigned.first().face;
- let vertex = eyeFace.outside;
- // now calculate the farthest vertex that face can see
- do {
- const distance = eyeFace.distanceToPoint( vertex.point );
- if ( distance > maxDistance ) {
- maxDistance = distance;
- eyeVertex = vertex;
- }
- vertex = vertex.next;
- } while ( vertex !== null && vertex.face === eyeFace );
- return eyeVertex;
- }
- }
- // Computes a chain of half edges in CCW order called the 'horizon'.
- // For an edge to be part of the horizon it must join a face that can see
- // 'eyePoint' and a face that cannot see 'eyePoint'.
- computeHorizon( eyePoint, crossEdge, face, horizon ) {
- // moves face's vertices to the 'unassigned' vertex list
- this.deleteFaceVertices( face );
- face.mark = Deleted;
- let edge;
- if ( crossEdge === null ) {
- edge = crossEdge = face.getEdge( 0 );
- } else {
- // start from the next edge since 'crossEdge' was already analyzed
- // (actually 'crossEdge.twin' was the edge who called this method recursively)
- edge = crossEdge.next;
- }
- do {
- const twinEdge = edge.twin;
- const oppositeFace = twinEdge.face;
- if ( oppositeFace.mark === Visible ) {
- if ( oppositeFace.distanceToPoint( eyePoint ) > this.tolerance ) {
- // the opposite face can see the vertex, so proceed with next edge
- this.computeHorizon( eyePoint, twinEdge, oppositeFace, horizon );
- } else {
- // the opposite face can't see the vertex, so this edge is part of the horizon
- horizon.push( edge );
- }
- }
- edge = edge.next;
- } while ( edge !== crossEdge );
- return this;
- }
- // Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head' in CCW order
- addAdjoiningFace( eyeVertex, horizonEdge ) {
- // all the half edges are created in ccw order thus the face is always pointing outside the hull
- const face = Face.create( eyeVertex, horizonEdge.tail(), horizonEdge.head() );
- this.faces.push( face );
- // join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )
- face.getEdge( - 1 ).setTwin( horizonEdge.twin );
- return face.getEdge( 0 ); // the half edge whose vertex is the eyeVertex
- }
- // Adds 'horizon.length' faces to the hull, each face will be linked with the
- // horizon opposite face and the face on the left/right
- addNewFaces( eyeVertex, horizon ) {
- this.newFaces = [];
- let firstSideEdge = null;
- let previousSideEdge = null;
- for ( let i = 0; i < horizon.length; i ++ ) {
- const horizonEdge = horizon[ i ];
- // returns the right side edge
- const sideEdge = this.addAdjoiningFace( eyeVertex, horizonEdge );
- if ( firstSideEdge === null ) {
- firstSideEdge = sideEdge;
- } else {
- // joins face.getEdge( 1 ) with previousFace.getEdge( 0 )
- sideEdge.next.setTwin( previousSideEdge );
- }
- this.newFaces.push( sideEdge.face );
- previousSideEdge = sideEdge;
- }
- // perform final join of new faces
- firstSideEdge.next.setTwin( previousSideEdge );
- return this;
- }
- // Adds a vertex to the hull
- addVertexToHull( eyeVertex ) {
- const horizon = [];
- this.unassigned.clear();
- // remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list
- this.removeVertexFromFace( eyeVertex, eyeVertex.face );
- this.computeHorizon( eyeVertex.point, null, eyeVertex.face, horizon );
- this.addNewFaces( eyeVertex, horizon );
- // reassign 'unassigned' vertices to the new faces
- this.resolveUnassignedPoints( this.newFaces );
- return this;
- }
- cleanup() {
- this.assigned.clear();
- this.unassigned.clear();
- this.newFaces = [];
- return this;
- }
- compute() {
- let vertex;
- this.computeInitialHull();
- // add all available vertices gradually to the hull
- while ( ( vertex = this.nextVertexToAdd() ) !== undefined ) {
- this.addVertexToHull( vertex );
- }
- this.reindexFaces();
- this.cleanup();
- return this;
- }
- }
- //
- class Face {
- constructor() {
- this.normal = new Vector3();
- this.midpoint = new Vector3();
- this.area = 0;
- this.constant = 0; // signed distance from face to the origin
- this.outside = null; // reference to a vertex in a vertex list this face can see
- this.mark = Visible;
- this.edge = null;
- }
- static create( a, b, c ) {
- const face = new Face();
- const e0 = new HalfEdge( a, face );
- const e1 = new HalfEdge( b, face );
- const e2 = new HalfEdge( c, face );
- // join edges
- e0.next = e2.prev = e1;
- e1.next = e0.prev = e2;
- e2.next = e1.prev = e0;
- // main half edge reference
- face.edge = e0;
- return face.compute();
- }
- getEdge( i ) {
- let edge = this.edge;
- while ( i > 0 ) {
- edge = edge.next;
- i --;
- }
- while ( i < 0 ) {
- edge = edge.prev;
- i ++;
- }
- return edge;
- }
- compute() {
- const a = this.edge.tail();
- const b = this.edge.head();
- const c = this.edge.next.head();
- _triangle.set( a.point, b.point, c.point );
- _triangle.getNormal( this.normal );
- _triangle.getMidpoint( this.midpoint );
- this.area = _triangle.getArea();
- this.constant = this.normal.dot( this.midpoint );
- return this;
- }
- distanceToPoint( point ) {
- return this.normal.dot( point ) - this.constant;
- }
- }
- // Entity for a Doubly-Connected Edge List (DCEL).
- class HalfEdge {
- constructor( vertex, face ) {
- this.vertex = vertex;
- this.prev = null;
- this.next = null;
- this.twin = null;
- this.face = face;
- }
- head() {
- return this.vertex;
- }
- tail() {
- return this.prev ? this.prev.vertex : null;
- }
- length() {
- const head = this.head();
- const tail = this.tail();
- if ( tail !== null ) {
- return tail.point.distanceTo( head.point );
- }
- return - 1;
- }
- lengthSquared() {
- const head = this.head();
- const tail = this.tail();
- if ( tail !== null ) {
- return tail.point.distanceToSquared( head.point );
- }
- return - 1;
- }
- setTwin( edge ) {
- this.twin = edge;
- edge.twin = this;
- return this;
- }
- }
- // A vertex as a double linked list node.
- class VertexNode {
- constructor( point ) {
- this.point = point;
- this.prev = null;
- this.next = null;
- this.face = null; // the face that is able to see this vertex
- }
- }
- // A double linked list that contains vertex nodes.
- class VertexList {
- constructor() {
- this.head = null;
- this.tail = null;
- }
- first() {
- return this.head;
- }
- last() {
- return this.tail;
- }
- clear() {
- this.head = this.tail = null;
- return this;
- }
- // Inserts a vertex before the target vertex
- insertBefore( target, vertex ) {
- vertex.prev = target.prev;
- vertex.next = target;
- if ( vertex.prev === null ) {
- this.head = vertex;
- } else {
- vertex.prev.next = vertex;
- }
- target.prev = vertex;
- return this;
- }
- // Inserts a vertex after the target vertex
- insertAfter( target, vertex ) {
- vertex.prev = target;
- vertex.next = target.next;
- if ( vertex.next === null ) {
- this.tail = vertex;
- } else {
- vertex.next.prev = vertex;
- }
- target.next = vertex;
- return this;
- }
- // Appends a vertex to the end of the linked list
- append( vertex ) {
- if ( this.head === null ) {
- this.head = vertex;
- } else {
- this.tail.next = vertex;
- }
- vertex.prev = this.tail;
- vertex.next = null; // the tail has no subsequent vertex
- this.tail = vertex;
- return this;
- }
- // Appends a chain of vertices where 'vertex' is the head.
- appendChain( vertex ) {
- if ( this.head === null ) {
- this.head = vertex;
- } else {
- this.tail.next = vertex;
- }
- vertex.prev = this.tail;
- // ensure that the 'tail' reference points to the last vertex of the chain
- while ( vertex.next !== null ) {
- vertex = vertex.next;
- }
- this.tail = vertex;
- return this;
- }
- // Removes a vertex from the linked list
- remove( vertex ) {
- if ( vertex.prev === null ) {
- this.head = vertex.next;
- } else {
- vertex.prev.next = vertex.next;
- }
- if ( vertex.next === null ) {
- this.tail = vertex.prev;
- } else {
- vertex.next.prev = vertex.prev;
- }
- return this;
- }
- // Removes a list of vertices whose 'head' is 'a' and whose 'tail' is b
- removeSubList( a, b ) {
- if ( a.prev === null ) {
- this.head = b.next;
- } else {
- a.prev.next = b.next;
- }
- if ( b.next === null ) {
- this.tail = a.prev;
- } else {
- b.next.prev = a.prev;
- }
- return this;
- }
- isEmpty() {
- return this.head === null;
- }
- }
- export { ConvexHull };
|