perlin.js 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /*
  2. * A speed-improved perlin and simplex noise algorithms for 2D.
  3. *
  4. * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
  5. * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
  6. * Better rank ordering method by Stefan Gustavson in 2012.
  7. * Converted to Javascript by Joseph Gentle.
  8. *
  9. * Version 2012-03-09
  10. *
  11. * This code was placed in the public domain by its original author,
  12. * Stefan Gustavson. You may use it as you see fit, but
  13. * attribution is appreciated.
  14. *
  15. */
  16. (function(global){
  17. var module = global.noise = {};
  18. function Grad(x, y, z) {
  19. this.x = x; this.y = y; this.z = z;
  20. }
  21. Grad.prototype.dot2 = function(x, y) {
  22. return this.x*x + this.y*y;
  23. };
  24. Grad.prototype.dot3 = function(x, y, z) {
  25. return this.x*x + this.y*y + this.z*z;
  26. };
  27. var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
  28. new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
  29. new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)];
  30. var p = [151,160,137,91,90,15,
  31. 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
  32. 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
  33. 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
  34. 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
  35. 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
  36. 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
  37. 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
  38. 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
  39. 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
  40. 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
  41. 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
  42. 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180];
  43. // To remove the need for index wrapping, double the permutation table length
  44. var perm = new Array(512);
  45. var gradP = new Array(512);
  46. // This isn't a very good seeding function, but it works ok. It supports 2^16
  47. // different seed values. Write something better if you need more seeds.
  48. module.seed = function(seed) {
  49. if(seed > 0 && seed < 1) {
  50. // Scale the seed out
  51. seed *= 65536;
  52. }
  53. seed = Math.floor(seed);
  54. if(seed < 256) {
  55. seed |= seed << 8;
  56. }
  57. for(var i = 0; i < 256; i++) {
  58. var v;
  59. if (i & 1) {
  60. v = p[i] ^ (seed & 255);
  61. } else {
  62. v = p[i] ^ ((seed>>8) & 255);
  63. }
  64. perm[i] = perm[i + 256] = v;
  65. gradP[i] = gradP[i + 256] = grad3[v % 12];
  66. }
  67. };
  68. module.seed(0);
  69. /*
  70. for(var i=0; i<256; i++) {
  71. perm[i] = perm[i + 256] = p[i];
  72. gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
  73. }*/
  74. // Skewing and unskewing factors for 2, 3, and 4 dimensions
  75. var F2 = 0.5*(Math.sqrt(3)-1);
  76. var G2 = (3-Math.sqrt(3))/6;
  77. var F3 = 1/3;
  78. var G3 = 1/6;
  79. // 2D simplex noise
  80. module.simplex2 = function(xin, yin) {
  81. var n0, n1, n2; // Noise contributions from the three corners
  82. // Skew the input space to determine which simplex cell we're in
  83. var s = (xin+yin)*F2; // Hairy factor for 2D
  84. var i = Math.floor(xin+s);
  85. var j = Math.floor(yin+s);
  86. var t = (i+j)*G2;
  87. var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
  88. var y0 = yin-j+t;
  89. // For the 2D case, the simplex shape is an equilateral triangle.
  90. // Determine which simplex we are in.
  91. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
  92. if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  93. i1=1; j1=0;
  94. } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  95. i1=0; j1=1;
  96. }
  97. // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  98. // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  99. // c = (3-sqrt(3))/6
  100. var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  101. var y1 = y0 - j1 + G2;
  102. var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
  103. var y2 = y0 - 1 + 2 * G2;
  104. // Work out the hashed gradient indices of the three simplex corners
  105. i &= 255;
  106. j &= 255;
  107. var gi0 = gradP[i+perm[j]];
  108. var gi1 = gradP[i+i1+perm[j+j1]];
  109. var gi2 = gradP[i+1+perm[j+1]];
  110. // Calculate the contribution from the three corners
  111. var t0 = 0.5 - x0*x0-y0*y0;
  112. if(t0<0) {
  113. n0 = 0;
  114. } else {
  115. t0 *= t0;
  116. n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient
  117. }
  118. var t1 = 0.5 - x1*x1-y1*y1;
  119. if(t1<0) {
  120. n1 = 0;
  121. } else {
  122. t1 *= t1;
  123. n1 = t1 * t1 * gi1.dot2(x1, y1);
  124. }
  125. var t2 = 0.5 - x2*x2-y2*y2;
  126. if(t2<0) {
  127. n2 = 0;
  128. } else {
  129. t2 *= t2;
  130. n2 = t2 * t2 * gi2.dot2(x2, y2);
  131. }
  132. // Add contributions from each corner to get the final noise value.
  133. // The result is scaled to return values in the interval [-1,1].
  134. return 70 * (n0 + n1 + n2);
  135. };
  136. // 3D simplex noise
  137. module.simplex3 = function(xin, yin, zin) {
  138. var n0, n1, n2, n3; // Noise contributions from the four corners
  139. // Skew the input space to determine which simplex cell we're in
  140. var s = (xin+yin+zin)*F3; // Hairy factor for 2D
  141. var i = Math.floor(xin+s);
  142. var j = Math.floor(yin+s);
  143. var k = Math.floor(zin+s);
  144. var t = (i+j+k)*G3;
  145. var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
  146. var y0 = yin-j+t;
  147. var z0 = zin-k+t;
  148. // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  149. // Determine which simplex we are in.
  150. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
  151. var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
  152. if(x0 >= y0) {
  153. if(y0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; }
  154. else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; }
  155. else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; }
  156. } else {
  157. if(y0 < z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; }
  158. else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; }
  159. else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; }
  160. }
  161. // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  162. // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  163. // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  164. // c = 1/6.
  165. var x1 = x0 - i1 + G3; // Offsets for second corner
  166. var y1 = y0 - j1 + G3;
  167. var z1 = z0 - k1 + G3;
  168. var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
  169. var y2 = y0 - j2 + 2 * G3;
  170. var z2 = z0 - k2 + 2 * G3;
  171. var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
  172. var y3 = y0 - 1 + 3 * G3;
  173. var z3 = z0 - 1 + 3 * G3;
  174. // Work out the hashed gradient indices of the four simplex corners
  175. i &= 255;
  176. j &= 255;
  177. k &= 255;
  178. var gi0 = gradP[i+ perm[j+ perm[k ]]];
  179. var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]];
  180. var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]];
  181. var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]];
  182. // Calculate the contribution from the four corners
  183. var t0 = 0.5 - x0*x0-y0*y0-z0*z0;
  184. if(t0<0) {
  185. n0 = 0;
  186. } else {
  187. t0 *= t0;
  188. n0 = t0 * t0 * gi0.dot3(x0, y0, z0); // (x,y) of grad3 used for 2D gradient
  189. }
  190. var t1 = 0.5 - x1*x1-y1*y1-z1*z1;
  191. if(t1<0) {
  192. n1 = 0;
  193. } else {
  194. t1 *= t1;
  195. n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
  196. }
  197. var t2 = 0.5 - x2*x2-y2*y2-z2*z2;
  198. if(t2<0) {
  199. n2 = 0;
  200. } else {
  201. t2 *= t2;
  202. n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
  203. }
  204. var t3 = 0.5 - x3*x3-y3*y3-z3*z3;
  205. if(t3<0) {
  206. n3 = 0;
  207. } else {
  208. t3 *= t3;
  209. n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
  210. }
  211. // Add contributions from each corner to get the final noise value.
  212. // The result is scaled to return values in the interval [-1,1].
  213. return 32 * (n0 + n1 + n2 + n3);
  214. };
  215. // ##### Perlin noise stuff
  216. function fade(t) {
  217. return t*t*t*(t*(t*6-15)+10);
  218. }
  219. function lerp(a, b, t) {
  220. return (1-t)*a + t*b;
  221. }
  222. // 2D Perlin Noise
  223. module.perlin2 = function(x, y) {
  224. // Find unit grid cell containing point
  225. var X = Math.floor(x), Y = Math.floor(y);
  226. // Get relative xy coordinates of point within that cell
  227. x = x - X; y = y - Y;
  228. // Wrap the integer cells at 255 (smaller integer period can be introduced here)
  229. X = X & 255; Y = Y & 255;
  230. // Calculate noise contributions from each of the four corners
  231. var n00 = gradP[X+perm[Y]].dot2(x, y);
  232. var n01 = gradP[X+perm[Y+1]].dot2(x, y-1);
  233. var n10 = gradP[X+1+perm[Y]].dot2(x-1, y);
  234. var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1);
  235. // Compute the fade curve value for x
  236. var u = fade(x);
  237. // Interpolate the four results
  238. return lerp(
  239. lerp(n00, n10, u),
  240. lerp(n01, n11, u),
  241. fade(y));
  242. };
  243. // 3D Perlin Noise
  244. module.perlin3 = function(x, y, z) {
  245. // Find unit grid cell containing point
  246. var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z);
  247. // Get relative xyz coordinates of point within that cell
  248. x = x - X; y = y - Y; z = z - Z;
  249. // Wrap the integer cells at 255 (smaller integer period can be introduced here)
  250. X = X & 255; Y = Y & 255; Z = Z & 255;
  251. // Calculate noise contributions from each of the eight corners
  252. var n000 = gradP[X+ perm[Y+ perm[Z ]]].dot3(x, y, z);
  253. var n001 = gradP[X+ perm[Y+ perm[Z+1]]].dot3(x, y, z-1);
  254. var n010 = gradP[X+ perm[Y+1+perm[Z ]]].dot3(x, y-1, z);
  255. var n011 = gradP[X+ perm[Y+1+perm[Z+1]]].dot3(x, y-1, z-1);
  256. var n100 = gradP[X+1+perm[Y+ perm[Z ]]].dot3(x-1, y, z);
  257. var n101 = gradP[X+1+perm[Y+ perm[Z+1]]].dot3(x-1, y, z-1);
  258. var n110 = gradP[X+1+perm[Y+1+perm[Z ]]].dot3(x-1, y-1, z);
  259. var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1);
  260. // Compute the fade curve value for x, y, z
  261. var u = fade(x);
  262. var v = fade(y);
  263. var w = fade(z);
  264. // Interpolate
  265. return lerp(
  266. lerp(
  267. lerp(n000, n100, u),
  268. lerp(n001, n101, u), w),
  269. lerp(
  270. lerp(n010, n110, u),
  271. lerp(n011, n111, u), w),
  272. v);
  273. };
  274. })(this);