import { AdditiveBlending, Color, DoubleSide, Matrix4, MeshDepthMaterial, NoBlending, RGBADepthPacking, ShaderMaterial, UniformsUtils, Vector2, Vector3, WebGLRenderTarget } from 'three'; import { Pass, FullScreenQuad } from './Pass.js'; import { CopyShader } from '../shaders/CopyShader.js'; class OutlinePass extends Pass { constructor( resolution, scene, camera, selectedObjects ) { super(); this.renderScene = scene; this.renderCamera = camera; this.selectedObjects = selectedObjects !== undefined ? selectedObjects : []; this.visibleEdgeColor = new Color( 1, 1, 1 ); this.hiddenEdgeColor = new Color( 0.1, 0.04, 0.02 ); this.edgeGlow = 0.0; this.usePatternTexture = false; this.edgeThickness = 1.0; this.edgeStrength = 3.0; this.downSampleRatio = 2; this.pulsePeriod = 0; this._visibilityCache = new Map(); this.resolution = ( resolution !== undefined ) ? new Vector2( resolution.x, resolution.y ) : new Vector2( 256, 256 ); const resx = Math.round( this.resolution.x / this.downSampleRatio ); const resy = Math.round( this.resolution.y / this.downSampleRatio ); this.renderTargetMaskBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y ); this.renderTargetMaskBuffer.texture.name = 'OutlinePass.mask'; this.renderTargetMaskBuffer.texture.generateMipmaps = false; this.depthMaterial = new MeshDepthMaterial(); this.depthMaterial.side = DoubleSide; this.depthMaterial.depthPacking = RGBADepthPacking; this.depthMaterial.blending = NoBlending; this.prepareMaskMaterial = this.getPrepareMaskMaterial(); this.prepareMaskMaterial.side = DoubleSide; this.prepareMaskMaterial.fragmentShader = replaceDepthToViewZ( this.prepareMaskMaterial.fragmentShader, this.renderCamera ); this.renderTargetDepthBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y ); this.renderTargetDepthBuffer.texture.name = 'OutlinePass.depth'; this.renderTargetDepthBuffer.texture.generateMipmaps = false; this.renderTargetMaskDownSampleBuffer = new WebGLRenderTarget( resx, resy ); this.renderTargetMaskDownSampleBuffer.texture.name = 'OutlinePass.depthDownSample'; this.renderTargetMaskDownSampleBuffer.texture.generateMipmaps = false; this.renderTargetBlurBuffer1 = new WebGLRenderTarget( resx, resy ); this.renderTargetBlurBuffer1.texture.name = 'OutlinePass.blur1'; this.renderTargetBlurBuffer1.texture.generateMipmaps = false; this.renderTargetBlurBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ) ); this.renderTargetBlurBuffer2.texture.name = 'OutlinePass.blur2'; this.renderTargetBlurBuffer2.texture.generateMipmaps = false; this.edgeDetectionMaterial = this.getEdgeDetectionMaterial(); this.renderTargetEdgeBuffer1 = new WebGLRenderTarget( resx, resy ); this.renderTargetEdgeBuffer1.texture.name = 'OutlinePass.edge1'; this.renderTargetEdgeBuffer1.texture.generateMipmaps = false; this.renderTargetEdgeBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ) ); this.renderTargetEdgeBuffer2.texture.name = 'OutlinePass.edge2'; this.renderTargetEdgeBuffer2.texture.generateMipmaps = false; const MAX_EDGE_THICKNESS = 4; const MAX_EDGE_GLOW = 4; this.separableBlurMaterial1 = this.getSeperableBlurMaterial( MAX_EDGE_THICKNESS ); this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy ); this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = 1; this.separableBlurMaterial2 = this.getSeperableBlurMaterial( MAX_EDGE_GLOW ); this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( Math.round( resx / 2 ), Math.round( resy / 2 ) ); this.separableBlurMaterial2.uniforms[ 'kernelRadius' ].value = MAX_EDGE_GLOW; // Overlay material this.overlayMaterial = this.getOverlayMaterial(); // copy material if ( CopyShader === undefined ) console.error( 'THREE.OutlinePass relies on CopyShader' ); const copyShader = CopyShader; this.copyUniforms = UniformsUtils.clone( copyShader.uniforms ); this.copyUniforms[ 'opacity' ].value = 1.0; this.materialCopy = new ShaderMaterial( { uniforms: this.copyUniforms, vertexShader: copyShader.vertexShader, fragmentShader: copyShader.fragmentShader, blending: NoBlending, depthTest: false, depthWrite: false, transparent: true } ); this.enabled = true; this.needsSwap = false; this._oldClearColor = new Color(); this.oldClearAlpha = 1; this.fsQuad = new FullScreenQuad( null ); this.tempPulseColor1 = new Color(); this.tempPulseColor2 = new Color(); this.textureMatrix = new Matrix4(); function replaceDepthToViewZ( string, camera ) { const type = camera.isPerspectiveCamera ? 'perspective' : 'orthographic'; return string.replace( /DEPTH_TO_VIEW_Z/g, type + 'DepthToViewZ' ); } } dispose() { this.renderTargetMaskBuffer.dispose(); this.renderTargetDepthBuffer.dispose(); this.renderTargetMaskDownSampleBuffer.dispose(); this.renderTargetBlurBuffer1.dispose(); this.renderTargetBlurBuffer2.dispose(); this.renderTargetEdgeBuffer1.dispose(); this.renderTargetEdgeBuffer2.dispose(); } setSize( width, height ) { this.renderTargetMaskBuffer.setSize( width, height ); this.renderTargetDepthBuffer.setSize( width, height ); let resx = Math.round( width / this.downSampleRatio ); let resy = Math.round( height / this.downSampleRatio ); this.renderTargetMaskDownSampleBuffer.setSize( resx, resy ); this.renderTargetBlurBuffer1.setSize( resx, resy ); this.renderTargetEdgeBuffer1.setSize( resx, resy ); this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy ); resx = Math.round( resx / 2 ); resy = Math.round( resy / 2 ); this.renderTargetBlurBuffer2.setSize( resx, resy ); this.renderTargetEdgeBuffer2.setSize( resx, resy ); this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( resx, resy ); } changeVisibilityOfSelectedObjects( bVisible ) { const cache = this._visibilityCache; function gatherSelectedMeshesCallBack( object ) { if ( object.isMesh ) { if ( bVisible === true ) { object.visible = cache.get( object ); } else { cache.set( object, object.visible ); object.visible = bVisible; } } } for ( let i = 0; i < this.selectedObjects.length; i ++ ) { const selectedObject = this.selectedObjects[ i ]; selectedObject.traverse( gatherSelectedMeshesCallBack ); } } changeVisibilityOfNonSelectedObjects( bVisible ) { const cache = this._visibilityCache; const selectedMeshes = []; function gatherSelectedMeshesCallBack( object ) { if ( object.isMesh ) selectedMeshes.push( object ); } for ( let i = 0; i < this.selectedObjects.length; i ++ ) { const selectedObject = this.selectedObjects[ i ]; selectedObject.traverse( gatherSelectedMeshesCallBack ); } function VisibilityChangeCallBack( object ) { if ( object.isMesh || object.isSprite ) { // only meshes and sprites are supported by OutlinePass let bFound = false; for ( let i = 0; i < selectedMeshes.length; i ++ ) { const selectedObjectId = selectedMeshes[ i ].id; if ( selectedObjectId === object.id ) { bFound = true; break; } } if ( bFound === false ) { const visibility = object.visible; if ( bVisible === false || cache.get( object ) === true ) { object.visible = bVisible; } cache.set( object, visibility ); } } else if ( object.isPoints || object.isLine ) { // the visibilty of points and lines is always set to false in order to // not affect the outline computation if ( bVisible === true ) { object.visible = cache.get( object ); // restore } else { cache.set( object, object.visible ); object.visible = bVisible; } } } this.renderScene.traverse( VisibilityChangeCallBack ); } updateTextureMatrix() { this.textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); this.textureMatrix.multiply( this.renderCamera.projectionMatrix ); this.textureMatrix.multiply( this.renderCamera.matrixWorldInverse ); } render( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) { if ( this.selectedObjects.length > 0 ) { renderer.getClearColor( this._oldClearColor ); this.oldClearAlpha = renderer.getClearAlpha(); const oldAutoClear = renderer.autoClear; renderer.autoClear = false; if ( maskActive ) renderer.state.buffers.stencil.setTest( false ); renderer.setClearColor( 0xffffff, 1 ); // Make selected objects invisible this.changeVisibilityOfSelectedObjects( false ); const currentBackground = this.renderScene.background; this.renderScene.background = null; // 1. Draw Non Selected objects in the depth buffer this.renderScene.overrideMaterial = this.depthMaterial; renderer.setRenderTarget( this.renderTargetDepthBuffer ); renderer.clear(); renderer.render( this.renderScene, this.renderCamera ); // Make selected objects visible this.changeVisibilityOfSelectedObjects( true ); this._visibilityCache.clear(); // Update Texture Matrix for Depth compare this.updateTextureMatrix(); // Make non selected objects invisible, and draw only the selected objects, by comparing the depth buffer of non selected objects this.changeVisibilityOfNonSelectedObjects( false ); this.renderScene.overrideMaterial = this.prepareMaskMaterial; this.prepareMaskMaterial.uniforms[ 'cameraNearFar' ].value.set( this.renderCamera.near, this.renderCamera.far ); this.prepareMaskMaterial.uniforms[ 'depthTexture' ].value = this.renderTargetDepthBuffer.texture; this.prepareMaskMaterial.uniforms[ 'textureMatrix' ].value = this.textureMatrix; renderer.setRenderTarget( this.renderTargetMaskBuffer ); renderer.clear(); renderer.render( this.renderScene, this.renderCamera ); this.renderScene.overrideMaterial = null; this.changeVisibilityOfNonSelectedObjects( true ); this._visibilityCache.clear(); this.renderScene.background = currentBackground; // 2. Downsample to Half resolution this.fsQuad.material = this.materialCopy; this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetMaskBuffer.texture; renderer.setRenderTarget( this.renderTargetMaskDownSampleBuffer ); renderer.clear(); this.fsQuad.render( renderer ); this.tempPulseColor1.copy( this.visibleEdgeColor ); this.tempPulseColor2.copy( this.hiddenEdgeColor ); if ( this.pulsePeriod > 0 ) { const scalar = ( 1 + 0.25 ) / 2 + Math.cos( performance.now() * 0.01 / this.pulsePeriod ) * ( 1.0 - 0.25 ) / 2; this.tempPulseColor1.multiplyScalar( scalar ); this.tempPulseColor2.multiplyScalar( scalar ); } // 3. Apply Edge Detection Pass this.fsQuad.material = this.edgeDetectionMaterial; this.edgeDetectionMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskDownSampleBuffer.texture; this.edgeDetectionMaterial.uniforms[ 'texSize' ].value.set( this.renderTargetMaskDownSampleBuffer.width, this.renderTargetMaskDownSampleBuffer.height ); this.edgeDetectionMaterial.uniforms[ 'visibleEdgeColor' ].value = this.tempPulseColor1; this.edgeDetectionMaterial.uniforms[ 'hiddenEdgeColor' ].value = this.tempPulseColor2; renderer.setRenderTarget( this.renderTargetEdgeBuffer1 ); renderer.clear(); this.fsQuad.render( renderer ); // 4. Apply Blur on Half res this.fsQuad.material = this.separableBlurMaterial1; this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture; this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX; this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = this.edgeThickness; renderer.setRenderTarget( this.renderTargetBlurBuffer1 ); renderer.clear(); this.fsQuad.render( renderer ); this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer1.texture; this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY; renderer.setRenderTarget( this.renderTargetEdgeBuffer1 ); renderer.clear(); this.fsQuad.render( renderer ); // Apply Blur on quarter res this.fsQuad.material = this.separableBlurMaterial2; this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture; this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX; renderer.setRenderTarget( this.renderTargetBlurBuffer2 ); renderer.clear(); this.fsQuad.render( renderer ); this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer2.texture; this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY; renderer.setRenderTarget( this.renderTargetEdgeBuffer2 ); renderer.clear(); this.fsQuad.render( renderer ); // Blend it additively over the input texture this.fsQuad.material = this.overlayMaterial; this.overlayMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskBuffer.texture; this.overlayMaterial.uniforms[ 'edgeTexture1' ].value = this.renderTargetEdgeBuffer1.texture; this.overlayMaterial.uniforms[ 'edgeTexture2' ].value = this.renderTargetEdgeBuffer2.texture; this.overlayMaterial.uniforms[ 'patternTexture' ].value = this.patternTexture; this.overlayMaterial.uniforms[ 'edgeStrength' ].value = this.edgeStrength; this.overlayMaterial.uniforms[ 'edgeGlow' ].value = this.edgeGlow; this.overlayMaterial.uniforms[ 'usePatternTexture' ].value = this.usePatternTexture; if ( maskActive ) renderer.state.buffers.stencil.setTest( true ); renderer.setRenderTarget( readBuffer ); this.fsQuad.render( renderer ); renderer.setClearColor( this._oldClearColor, this.oldClearAlpha ); renderer.autoClear = oldAutoClear; } if ( this.renderToScreen ) { this.fsQuad.material = this.materialCopy; this.copyUniforms[ 'tDiffuse' ].value = readBuffer.texture; renderer.setRenderTarget( null ); this.fsQuad.render( renderer ); } } getPrepareMaskMaterial() { return new ShaderMaterial( { uniforms: { 'depthTexture': { value: null }, 'cameraNearFar': { value: new Vector2( 0.5, 0.5 ) }, 'textureMatrix': { value: null } }, vertexShader: `#include #include varying vec4 projTexCoord; varying vec4 vPosition; uniform mat4 textureMatrix; void main() { #include #include #include #include #include #include vPosition = mvPosition; projTexCoord = textureMatrix * worldPosition; }`, fragmentShader: `#include varying vec4 vPosition; varying vec4 projTexCoord; uniform sampler2D depthTexture; uniform vec2 cameraNearFar; void main() { float depth = unpackRGBAToDepth(texture2DProj( depthTexture, projTexCoord )); float viewZ = - DEPTH_TO_VIEW_Z( depth, cameraNearFar.x, cameraNearFar.y ); float depthTest = (-vPosition.z > viewZ) ? 1.0 : 0.0; gl_FragColor = vec4(0.0, depthTest, 1.0, 1.0); }` } ); } getEdgeDetectionMaterial() { return new ShaderMaterial( { uniforms: { 'maskTexture': { value: null }, 'texSize': { value: new Vector2( 0.5, 0.5 ) }, 'visibleEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) }, 'hiddenEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) }, }, vertexShader: `varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: `varying vec2 vUv; uniform sampler2D maskTexture; uniform vec2 texSize; uniform vec3 visibleEdgeColor; uniform vec3 hiddenEdgeColor; void main() { vec2 invSize = 1.0 / texSize; vec4 uvOffset = vec4(1.0, 0.0, 0.0, 1.0) * vec4(invSize, invSize); vec4 c1 = texture2D( maskTexture, vUv + uvOffset.xy); vec4 c2 = texture2D( maskTexture, vUv - uvOffset.xy); vec4 c3 = texture2D( maskTexture, vUv + uvOffset.yw); vec4 c4 = texture2D( maskTexture, vUv - uvOffset.yw); float diff1 = (c1.r - c2.r)*0.5; float diff2 = (c3.r - c4.r)*0.5; float d = length( vec2(diff1, diff2) ); float a1 = min(c1.g, c2.g); float a2 = min(c3.g, c4.g); float visibilityFactor = min(a1, a2); vec3 edgeColor = 1.0 - visibilityFactor > 0.001 ? visibleEdgeColor : hiddenEdgeColor; gl_FragColor = vec4(edgeColor, 1.0) * vec4(d); }` } ); } getSeperableBlurMaterial( maxRadius ) { return new ShaderMaterial( { defines: { 'MAX_RADIUS': maxRadius, }, uniforms: { 'colorTexture': { value: null }, 'texSize': { value: new Vector2( 0.5, 0.5 ) }, 'direction': { value: new Vector2( 0.5, 0.5 ) }, 'kernelRadius': { value: 1.0 } }, vertexShader: `varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: `#include varying vec2 vUv; uniform sampler2D colorTexture; uniform vec2 texSize; uniform vec2 direction; uniform float kernelRadius; float gaussianPdf(in float x, in float sigma) { return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma; } void main() { vec2 invSize = 1.0 / texSize; float sigma = kernelRadius/2.0; float weightSum = gaussianPdf(0.0, sigma); vec4 diffuseSum = texture2D( colorTexture, vUv) * weightSum; vec2 delta = direction * invSize * kernelRadius/float(MAX_RADIUS); vec2 uvOffset = delta; for( int i = 1; i <= MAX_RADIUS; i ++ ) { float x = kernelRadius * float(i) / float(MAX_RADIUS); float w = gaussianPdf(x, sigma); vec4 sample1 = texture2D( colorTexture, vUv + uvOffset); vec4 sample2 = texture2D( colorTexture, vUv - uvOffset); diffuseSum += ((sample1 + sample2) * w); weightSum += (2.0 * w); uvOffset += delta; } gl_FragColor = diffuseSum/weightSum; }` } ); } getOverlayMaterial() { return new ShaderMaterial( { uniforms: { 'maskTexture': { value: null }, 'edgeTexture1': { value: null }, 'edgeTexture2': { value: null }, 'patternTexture': { value: null }, 'edgeStrength': { value: 1.0 }, 'edgeGlow': { value: 1.0 }, 'usePatternTexture': { value: 0.0 } }, vertexShader: `varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: `varying vec2 vUv; uniform sampler2D maskTexture; uniform sampler2D edgeTexture1; uniform sampler2D edgeTexture2; uniform sampler2D patternTexture; uniform float edgeStrength; uniform float edgeGlow; uniform bool usePatternTexture; void main() { vec4 edgeValue1 = texture2D(edgeTexture1, vUv); vec4 edgeValue2 = texture2D(edgeTexture2, vUv); vec4 maskColor = texture2D(maskTexture, vUv); vec4 patternColor = texture2D(patternTexture, 6.0 * vUv); float visibilityFactor = 1.0 - maskColor.g > 0.0 ? 1.0 : 0.5; vec4 edgeValue = edgeValue1 + edgeValue2 * edgeGlow; vec4 finalColor = edgeStrength * maskColor.r * edgeValue; if(usePatternTexture) finalColor += + visibilityFactor * (1.0 - maskColor.r) * (1.0 - patternColor.r); gl_FragColor = finalColor; }`, blending: AdditiveBlending, depthTest: false, depthWrite: false, transparent: true } ); } } OutlinePass.BlurDirectionX = new Vector2( 1.0, 0.0 ); OutlinePass.BlurDirectionY = new Vector2( 0.0, 1.0 ); export { OutlinePass };